Journal of Alloys and Metallurgical Systems (Jun 2024)
Investigating the cyto-compatibility of ZrNbVTiAl high entropy alloy
Abstract
An investigation was carried out to assess the suitability of equiatomic ZrNbVTiAl high-entropy alloy (HEA) for biomedical applications. This included microstructural analysis, mechanical property evaluation and in–vivo testing in biological media to examine its cyto-compatibility. The alloy developed a dendritic structure on solidification through arc melting, with BCC –B2 type dendrites separated by inter-dendritic regions rich in Al and Zr. The evolved microstructure and composition matched well with those predicted by the phase field modelling. The HEA also showed a high yield strength (1045 MPa) and moderate elastic modulus (120 GPa) comparable to the commonly used biomedical alloy, Ti-6Al-4 V. Cell culture studies with U2OS Cells showed substantial attachment and growth of healthy osteoblasts to the HEA as well as negligible bio-corrosion after 45 days of exposure. Most importantly, the alloy showed a significantly high tendency of cell attachment than pure Ti and lower magnetic susceptibility (2.55 ×10−6 cm3/g) than Ti-6Al-4 V alloy indicating its suitability for biomedical applications.