Biomedicines (Jan 2024)

Upregulation of Anti-Angiogenic miR-106b-3p Correlates Negatively with IGF-1 and Vascular Health Parameters in a Model of Subclinical Cardiovascular Disease: Study with Metformin Therapy

  • Sherin Bakhashab,
  • Josie O’Neill,
  • Rosie Barber,
  • Catherine Arden,
  • Jolanta U. Weaver

DOI
https://doi.org/10.3390/biomedicines12010171
Journal volume & issue
Vol. 12, no. 1
p. 171

Abstract

Read online

Well-controlled type 1 diabetes mellitus (T1DM) is regarded as a model of subclinical cardiovascular disease (CVD), characterized by inflammation and adverse vascular health. However, the underlying mechanisms are not fully understood. We investigated insulin-like growth factor-1 (IGF-1) and IGF-binding protein-3 (IGFBP-3) levels, their correlation to miR-106b-3p expression in a subclinical CVD model, and the cardioprotective effect of metformin. A total of 20 controls and 29 well-controlled T1DM subjects were studied. Plasma IGF-1, IGFBP-3 levels, and miR-106b-3p expression in colony-forming unit-Hills were analyzed and compared with vascular markers. miR-106b-3p was upregulated in T1DM (p p p p p < 0.0001). An Ingenuity Pathway analysis predicted miR-106b-3p to inhibit PDGFA, PIK3CG, GDNF, and ADAMTS13, which activated CVD. Metformin was predicted to be cardioprotective by inhibiting miR-106b-3p. In conclusion: Subclinical CVD is characterized by a cardio-adverse profile of low IGF-1 and upregulated miR-106b-3p. We demonstrated that the cardioprotective effect of metformin may be via downregulation of upregulated miR-106b-3p and its effect on downstream targets.

Keywords