Energies (Nov 2021)
Estimation of Stress-Strength Reliability for Multicomponent System with Rayleigh Data
Abstract
Inference is investigated for a multicomponent stress-strength reliability (MSR) under Type-II censoring when the latent failure times follow two-parameter Rayleigh distribution. With a context that the lifetimes of the strength and stress variables have common location parameters, maximum likelihood estimator of MSR along with the existence and uniqueness is established. The associated approximate confidence interval is provided via the asymptotic distribution theory and delta method. Meanwhile, alternative generalized pivotal quantities-based point and confidence interval estimators are also constructed for MSR. More generally, when the lifetimes of strength and stress variables follow Rayleigh distributions with unequal location parameters, likelihood and generalized pivotal-based estimators are provided for MSR as well. In addition, to compare the equivalence of different strength and stress parameters, a likelihood ratio test is provided. Finally, simulation studies and a real data example are presented for illustration.
Keywords