Sensors (Mar 2023)

Coordinated Optimal Control of AFS and DYC for Four-Wheel Independent Drive Electric Vehicles Based on MAS Model

  • Niaona Zhang,
  • Jieshu Wang,
  • Zonghao Li,
  • Nan Xu,
  • Haitao Ding,
  • Zhe Zhang,
  • Konghui Guo,
  • Haochen Xu

DOI
https://doi.org/10.3390/s23073505
Journal volume & issue
Vol. 23, no. 7
p. 3505

Abstract

Read online

The problem that it is difficult to balance vehicle stability and economy at the same time under the starting steering condition of a four-wheel independent drive electric vehicle (4WIDEV) is addressed. In this paper, we propose a coordinated optimal control method of AFS and DYC for a four-wheel independent drive electric vehicle based on the MAS model. Firstly, the angular velocity of the transverse pendulum at the center of mass and the lateral deflection angle of the center of mass are decoupled by vector transformation, and the two-degree-of-freedom eight-input model of the vehicle is transformed into four two-degree-of-freedom two-input models, and the reduced-dimensional system is regarded as four agents. Based on the hardware connection structure and communication topology of the four-wheel independent drive electric vehicle, the reduced-dimensional model of 4WIDEV AFS and DYC coordinated optimal control is established based on graph theory. Secondly, the deviation of the vehicle transverse swing angular velocity and mass lateral deflection angle from their ideal values is oriented by combining sliding mode variable structure control (SMC) with distributed model predictive control (DMPC). A discrete dynamic sliding mode surface function is proposed for the ith agent to improve the robustness of the system in response to parameter variations and disturbances. Considering the stability and economy of the ith agent, an active front wheel steering and drive torque optimization control method based on SMC and DMPC is proposed for engineering applications. Finally, a hardware-in-the-loop (HIL) test bench is built for experimental verification, and the results show that the steering angle is in the range of 0–5°, and the proposed method effectively weighs the system dynamic performance, computational efficiency, and the economy of the whole vehicle. Compared with the conventional centralized control method, the torque-solving speed is improved by 32.33 times, and the electrical consumption of the wheel motor is reduced by 16.6%.

Keywords