The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO2
Pierre-Louis Ruffault,
Fabien D'Autréaux,
John A Hayes,
Marc Nomaksteinsky,
Sandra Autran,
Tomoyuki Fujiyama,
Mikio Hoshino,
Martin Hägglund,
Ole Kiehn,
Jean-François Brunet,
Gilles Fortin,
Christo Goridis
Affiliations
Pierre-Louis Ruffault
Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
Fabien D'Autréaux
Institut de Biologie de l'École Normale Supérieure, Inserm U1024, and CNRS UMR 8197, Paris, France
John A Hayes
Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
Marc Nomaksteinsky
Institut de Biologie de l'École Normale Supérieure, Inserm U1024, and CNRS UMR 8197, Paris, France
Sandra Autran
Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
Tomoyuki Fujiyama
Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
Mikio Hoshino
Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
Martin Hägglund
Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
Ole Kiehn
Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
Jean-François Brunet
Institut de Biologie de l'École Normale Supérieure, Inserm U1024, and CNRS UMR 8197, Paris, France
Gilles Fortin
Université Paris-Saclay, Université Paris-Sud, CNRS, UMR 9197, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
Christo Goridis
Institut de Biologie de l'École Normale Supérieure, Inserm U1024, and CNRS UMR 8197, Paris, France
Maintaining constant CO2 and H+ concentrations in the arterial blood is critical for life. The principal mechanism through which this is achieved in mammals is the respiratory chemoreflex whose circuitry is still elusive. A candidate element of this circuitry is the retrotrapezoid nucleus (RTN), a collection of neurons at the ventral medullary surface that are activated by increased CO2 or low pH and project to the respiratory rhythm generator. Here, we use intersectional genetic strategies to lesion the RTN neurons defined by Atoh1 and Phox2b expression and to block or activate their synaptic output. Photostimulation of these neurons entrains the respiratory rhythm. Conversely, abrogating expression of Atoh1 or Phox2b or glutamatergic transmission in these cells curtails the phrenic nerve response to low pH in embryonic preparations and abolishes the respiratory chemoreflex in behaving animals. Thus, the RTN neurons expressing Atoh1 and Phox2b are a necessary component of the chemoreflex circuitry.