Algorithms (Dec 2024)
Measuring the Inferential Values of Relations in Knowledge Graphs
Abstract
Knowledge graphs, as an important research direction in artificial intelligence, have been widely applied in many fields and tasks. The relations in knowledge graphs have explicit semantics and play a crucial role in knowledge completion and reasoning. Correctly measuring the inferential value of relations and identifying important relations in a knowledge graph can effectively improve the effectiveness of knowledge graphs in reasoning tasks. However, the existing methods primarily consider the connectivity and structural characteristics of relations, but neglect the semantics and the mutual influence of relations in reasoning tasks. This leads to truly valuable relations being difficult to fully utilize in long-chain reasoning. To address this problem, this work, inspired by information entropy and uncertainty-measurement methods in knowledge bases, proposes a method called Relation Importance Measurement based on Information Entropy (RIMIE) to measure the inferential value of relations in knowledge graphs. RIMIE considers the semantics of relations and the role of relations in reasoning. Specifically, based on the values of relations in logical chains, RIMIE partitions the logical sample set into multiple equivalence classes, and generates a knowledge structure for each relation. Correspondingly, to effectively measure the inferential values of relations in knowledge graphs, the concept of relation entropy is proposed, and it is calculated according to the knowledge structures. Finally, to objectively assess the effectiveness of RIMIE, a group of experiments are conducted, which compare the influences of the relations selected according to RIMIE and other patterns on the triple classifications by knowledge graph representation learning. The experimental results confirm what is claimed above.
Keywords