Energies (Mar 2022)
Evaluation and Design of Large-Scale Solar Adsorption Cooling Systems Based on Energetic, Economic and Environmental Performance
Abstract
In hot and dry regions such as the Gulf Cooperation Council (GCC) countries, the cooling demand is often responsible for more than 70% of electricity consumption, which places a massive strain on the electricity grid and leads to significant emissions. Solar thermal driven Silica-Gel/Water adsorption chillers, used for space cooling, could provide low carbon emission cooling and reduce the reliance on grid electricity. However, a meticulous design is required to make this both economically and environmentally beneficial. This paper aims to evaluate the solar thermal adsorption chiller performance based on large-scale cooling demand through a TRNSYS simulation for 1 year of operation. The proposed system consists of two main parts: first, the solar loop with evacuated tube solar collectors; and second, the adsorption cooling system with a silica-gel/water adsorption chiller. A neighbourhood of 80 typical 197 m2 villas in Riyadh, the capital city of the Kingdom of Saudi Arabia (KSA), was taken as a case study. The solar adsorption cycle’s performance has been compared to the conventional vapour compression cycle in terms of energy, economic and environmental performance. In addition, a parametric study has been performed for the main design parameters. Results reveal that the system can reach a solar fraction of 96% with solar collector area of 5500 m2 and a storage tank volume between 350 and 400 m3. Furthermore, the annual energy cost can be reduced by 74% for the solar adsorption system compared to the conventional vapour compression cycle. Meanwhile, the CO2 saving percentage for the solar adsorption cycle was approximately 75% compared to the conventional vapour compression cycle. Carefully designed solar thermal cooling systems can reduce greenhouse gas emissions while covering a large scale of cooling demands. This can reduce the strain on the electricity grid as well as greenhouse gas emissions.
Keywords