MATEC Web of Conferences (Apr 2014)

Some durability aspects of hybrid alkaline cements

  • Donatello S.,
  • Garcia-Lodeiro I.,
  • Fernandez-Jimenez A.,
  • Palomo A.

DOI
https://doi.org/10.1051/matecconf/20141101008
Journal volume & issue
Vol. 11
p. 01008

Abstract

Read online

Blended cements that contain a high content of fly ash and a low content of Portland cement typically suffer from low early strength development and long setting times. Recently, one method of overcoming these problems has been to use an alkali activator to enhance the reactivity of fly ash particles at early ages. Such cements can be grouped under the generic term “hybrid alkaline cements”, where both cement clinker and fly ash, encouraged by the presence of alkalis, are expected to contribute to cementitious gel formation. The work presented here examines some of the durability aspects of high fly ash content hybrid alkaline cement. Specifically, the aspects investigated were: exposure at high temperatures (up to 1000°C), resistance to immersion in aggressive solutions and susceptibility to the alkali aggregate reaction. All tests were repeated with a commercially available sulfate resistant Portland cement for comparison. When exposed to high temperatures, the hybrid alkaline cement showed strikingly different behaviour compared to the control Portland cement, showing fewer micro-cracks and maintaining residual compressive strengths at least equal to original strengths. Beyond 700°C, the hybrid alkaline cement began to sinter, which resulted in shrinkage of around 5% and a 100% increase in residual compressive strengths. No such sintering event was noted in the control Portland cement, which showed a drastic loss in residual compressive strengths upon heating. In immersion tests, the hybrid alkaline cement possessed excellent resistance to sulfate and seawater attack, similar to the control sulfate resistant cement. Both cements were however severely degraded by immersion in 0.1M HCl for 90 days. Both binders complied with the accelerated alkali-aggregate test but when this test was extended, the hybrid alkaline binder showed much greater dimensional stability. Possible reasons for the differences in durability behaviour in both cements are discussed, based on experimental evidence provided.