Scientific Reports (Sep 2024)
A novel design of journal bearings for stability under shock loads
Abstract
Abstract Mechanical systems are expected to operate under various load conditions, and it is necessary to use a lubrication system to achieve reliability and stable performance. Journal bearings, which are used to achieve such stable lubrication, are representative of hydrodynamic lubrication bearings. In this study, groove-shaped structures and rubber were applied to the ends of the bearings to ensure stable lubrication performance under conditions where, for various reasons, shock loads are applied in addition to static loads under misaligned conditions. The groove structure and rubber contribute to stable lubrication performance by preventing contact between the shaft and bearing as well as absorbing shock loads through elastic deformation of the groove’s end due to oil film pressure. This novel design, which utilizes groove-type flexible structures and rubber, led to journal bearings that exhibited improved lubrication performance under various shock load conditions. When a shock load is applied to a mechanical system, the design proposed in this study contributes to improving the reliability of the mechanical system by enhancing its lubrication performance.
Keywords