Frontiers in Bioscience-Landmark (Jun 2022)

Preliminary Study on the Possibility to Detect Virus Nucleic Acids in Post-Mortem Blood Samples

  • Stefania Turrina,
  • Davide Gibellini,
  • Giacomo Giannini,
  • Anna Lagni,
  • Erica Diani,
  • Virginia Lotti,
  • Giulia Soldati,
  • Filippo Gibelli,
  • Dario Raniero,
  • Domenico De Leo

Journal volume & issue
Vol. 27, no. 6
p. 183


Read online

Background: In many forensic cases, the medical records of the deceased are not available at the time of the autopsy; therefore, no information about the deceased’s state of health, including any infectious diseases contracted during life, is accessible. The detection of some of the principal viral infections, such as hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus type 1 (HIV-1), could contribute to determining causes of death and interesting applications could be found in medico-legal practice, such as occupational risk assessment. To date, accurate and sensitive serological and molecular assays capable of detecting these viruses have been validated on biological samples taken from living beings, while their efficiency on forensic post-mortem biological samples has yet to be thoroughly assessed. To further this aim, this study evaluated whether the nucleic acid amplification techniques (NAATs) for the detection of viral genomes that are applied in clinical settings can be used, with the same success rate, for these latter samples. Methods: Manual viral nucleic acid extraction processes and fully-automated amplification-based detection techniques developed in-house were evaluated on blood samples taken during the routine autopsies of 21 cadavers performed 2 to 9 days after death. Information on HBV, HCV, and HIV-1 seropositive status was previously known for only four of these cadavers. Results: Using automated quantitative real-time PCR (qPCR) and qualitative PCR (end-point) analyses, it was possible to confirm the presence of viral genomes in the four post-mortem whole blood samples with previously reported specific serological positivity. In addition, the genomes of HCV and/or HIV-1 genomes were detected in three other blood samples with unknown serological status at the time of autopsy. Conclusions: Therefore, our findings suggest that molecular assays may detect the presence of viral genomes in forensic post-mortem blood samples up to five days after death. This provides an additional means of investigation that can contribute to the determination of the deceased’s cause of death.