Oil & Gas Science and Technology (Oct 2013)

Inverse Problem Approach for the Alignment of Electron Tomographic Series

  • Tran V.-D.,
  • Moreaud M.,
  • Thiébaut É.,
  • Denis L.,
  • Becker J. M.

DOI
https://doi.org/10.2516/ogst/2013116
Journal volume & issue
Vol. 69, no. 2
pp. 279 – 291

Abstract

Read online

In the refining industry, morphological measurements of particles have become an essential part in the characterization catalyst supports. Through these parameters, one can infer the specific physicochemical properties of the studied materials. One of the main acquisition techniques is electron tomography (or nanotomography). 3D volumes are reconstructed from sets of projections from different angles made by a Transmission Electron Microscope (TEM). This technique provides a real three-dimensional information at the nanometric scale. A major issue in this method is the misalignment of the projections that contributes to the reconstruction. The current alignment techniques usually employ fiducial markers such as gold particles for a correct alignment of the images. When the use of markers is not possible, the correlation between adjacent projections is used to align them. However, this method sometimes fails. In this paper, we propose a new method based on the inverse problem approach where a certain criterion is minimized using a variant of the Nelder and Mead simplex algorithm. The proposed approach is composed of two steps. The first step consists of an initial alignment process, which relies on the minimization of a cost function based on robust statistics measuring the similarity of a projection to its previous projections in the series. It reduces strong shifts resulting from the acquisition between successive projections. In the second step, the pre-registered projections are used to initialize an iterative alignment-refinement process which alternates between (i) volume reconstructions and (ii) registrations of measured projections onto simulated projections computed from the volume reconstructed in (i). At the end of this process, we have a correct reconstruction of the volume, the projections being correctly aligned. Our method is tested on simulated data and shown to estimate accurately the translation, rotation and scale of arbitrary transforms. We have successfully tested our method with real projections of different catalyst supports.