Physical Review Accelerators and Beams (Dec 2019)

Gigahertz repetition rate thermionic electron gun concept

  • W. F. Toonen,
  • X. F. D. Stragier,
  • P. H. A. Mutsaers,
  • O. J. Luiten

DOI
https://doi.org/10.1103/PhysRevAccelBeams.22.123401
Journal volume & issue
Vol. 22, no. 12
p. 123401

Abstract

Read online Read online

We present a novel concept for the generation of gigahertz repetition rate high brightness electron bunches. A custom design 100 kV thermionic gun provides a continuous electron beam, with the current determined by the filament size and temperature. A 1 GHz rectangular rf cavity deflects the beam across a knife-edge, creating a pulsed beam. Adding a higher harmonic mode to this cavity results in a flattened magnetic field profile which increases the duty cycle to 30%. Finally, a compression cavity induces a negative longitudinal velocity-time chirp in a bunch, initiating ballistic compression. Adding a higher harmonic mode to this cavity increases the linearity of this chirp and thus decreases the final bunch length. Charged particle simulations show that with a 0.15 mm radius LaB_{6} filament held at 1760 K, this method can create 279 fs, 3.0 pC electron bunches with a radial rms core emittance of 0.089 mm mrad at a repetition rate of 1 GHz.