Translational Oncology (Jan 2020)

Inhibition of Casein Kinase II by CX-4945, But Not Yes-associated protein (YAP) by Verteporfin, Enhances the Antitumor Efficacy of Temozolomide in Glioblastoma

  • Xiangyu Liu,
  • Jieyu Chen,
  • Wei Li,
  • Chunhua Hang,
  • Yuyuan Dai

Journal volume & issue
Vol. 13, no. 1
pp. 70 – 78

Abstract

Read online

Overcoming temozolomide (TMZ) resistance in glioma cancer cells remains a major challenge to the effective treatment of the disease. Increasing TMZ efficacy for patients with glioblastoma (GBM) is urgently needed because TMZ treatment is the standard chemotherapy protocol for adult patients with glioblastoma. O6-methylguanine-DNA-methyltransferase (MGMT) overexpression is associated with TMZ resistance, and low MGMT is a positive response marker for TMZ therapy. Here, we used 3 glioma cell lines (SF767, U373, and LN229), which had different levels of TMZ sensitivity. We found TMZ sensitivity is positively correlated with MGMT expression and multidrug-resistance protein ABC subfamily G member 2 (ABCG2) in these cells. CK2-STAT3 signaling and Hippo-YAP signaling are reported to regulate MGMT expression and ABCG2 expression, respectively. We combined CK2 inhibitor CX-4945 and YAP inhibitor verteporfin with TMZ treatment. We found that CX-4945 but not verteporfin can sensitize TMZ-resistant cells SF767 to TMZ and that CX-4945 and TMZ combinational treatment was effective for glioma treatment in mouse models compared with TMZ alone. Implications: A combination of CK2 inhibitor with TMZ may improve the therapeutic efficiency of TMZ toward GBM with acquired resistance.