Abstract Developing novel lead‐free ferroelectric materials is crucial for next‐generation microelectronic technologies that are energy efficient and environment friendly. However, materials discovery and property optimization are typically time‐consuming due to the limited throughput of traditional synthesis methods. In this work, we use a high‐throughput combinatorial synthesis approach to fabricate lead‐free ferroelectric superlattices and solid solutions of (Ba0.7Ca0.3)TiO3 (BCT) and Ba(Zr0.2Ti0.8)O3 (BZT) phases with continuous variation of composition and layer thickness. High‐resolution x‐ray diffraction (XRD) and analytical scanning transmission electron microscopy (STEM) demonstrate high film quality and well‐controlled compositional gradients. Ferroelectric and dielectric property measurements identify the “optimal property point” achieved at the composition of 48BZT–52BCT. Displacement vector maps reveal that ferroelectric domain sizes are tunable by varying {BCT–BZT}N superlattice geometry. This high‐throughput synthesis approach can be applied to many other material systems to expedite new materials discovery and properties optimization, allowing for the exploration of a large area of phase space within a single growth.