Mathematics (Sep 2020)

Possibilities of Using Kalman Filters in Indoor Localization

  • Katerina Fronckova,
  • Pavel Prazak

DOI
https://doi.org/10.3390/math8091564
Journal volume & issue
Vol. 8, no. 9
p. 1564

Abstract

Read online

Kalman filters are a set of algorithms based on the idea of a filter described by Rudolf Emil Kalman in 1960. Kalman filters are used in various application domains, including localization, object tracking, and navigation. The text provides an overview and discussion of the possibilities of using Kalman filters in indoor localization. The problems of static localization and localization of dynamically moving objects are investigated, and corresponding stochastic models are created. Three algorithms for static localization and one algorithm for dynamic localization are described and demonstrated. All algorithms are implemented in the MATLAB software, and then their performance is tested on Bluetooth Low Energy data from a real indoor environment. The results show that by using Kalman filters, the mean localization error of two meters can be achieved, which is one meter less than in the case of using the standard fingerprinting technique. In general, the presented principles of Kalman filters are applicable in connection with various technologies and data of various nature.

Keywords