Sensors (Dec 2021)
A Hybrid Visual-Based SLAM Architecture: Local Filter-Based SLAM with KeyFrame-Based Global Mapping
Abstract
This work presents a hybrid visual-based SLAM architecture that aims to take advantage of the strengths of each of the two main methodologies currently available for implementing visual-based SLAM systems, while at the same time minimizing some of their drawbacks. The main idea is to implement a local SLAM process using a filter-based technique, and enable the tasks of building and maintaining a consistent global map of the environment, including the loop closure problem, to use the processes implemented using optimization-based techniques. Different variants of visual-based SLAM systems can be implemented using the proposed architecture. This work also presents the implementation case of a full monocular-based SLAM system for unmanned aerial vehicles that integrates additional sensory inputs. Experiments using real data obtained from the sensors of a quadrotor are presented to validate the feasibility of the proposed approach.
Keywords