Royal Society Open Science (Mar 2024)

PMMA bone cement with L-arginine/nano fish bone nanocomplex for apatite formation

  • Gessica Aurel Khoman,
  • Muhammad Harza Arbaha Kalijaga,
  • Nuning Aisah,
  • Riastuti Fidyaningsih,
  • Jarot Raharjo,
  • Oka P. Arjasa,
  • Ekavianty Prajatelistia

DOI
https://doi.org/10.1098/rsos.231694
Journal volume & issue
Vol. 11, no. 3

Abstract

Read online

Bone cement is one of the materials used in orthopaedics that serves various functions, such as binding bone implants, replacing damaged bones and filling spaces within bones. Various materials have been used to synthesize bone cement, and one promising material for further research is fish bone waste-based bone cement. This study investigates the potential of fish bone waste-based bone cement by incorporating nano fish bone (NFB) and L-arginine (L-Arg) protein into polymethyl methacrylate (PMMA) to examine apatite growth. NFB derived from the Salmo salar fish positively influences osteoblast cell proliferation and differentiation, while L-Arg enhances biocompatibility and antibiotic properties. The NFB/L-Arg combination holds promise in accelerating new bone formation and cell growth, both of which are crucial for fracture healing and bone remodelling. Tensile strength tests reveal the superior performance of BC-PMMA-1-NFB/L-Arg (36.11 MPa) compared with commercial PMMA (32 MPa). Immersion tests with simulated body fluid (SBF) solution for 7 days reveal accelerated apatite layer formation, emphasizing the potential benefits of NFB/L-Arg in bone cement applications.

Keywords