PeerJ (Oct 2022)

Intensive hunting changes human-wildlife relationships

  • Arielle Waldstein Parsons,
  • Martin Wikelski,
  • Brigitta Keeves von Wolff,
  • Jan Dodel,
  • Roland Kays

DOI
https://doi.org/10.7717/peerj.14159
Journal volume & issue
Vol. 10
p. e14159

Abstract

Read online Read online

Wildlife alter their behaviors in a trade-off between consuming food and fear of becoming food themselves. The risk allocation hypothesis posits that variation in the scale, intensity and longevity of predation threats can influence the magnitude of antipredator behavioral responses. Hunting by humans represents a threat thought to be perceived by wildlife similar to how they perceive a top predator, although hunting intensity and duration varys widely around the world. Here we evaluate the effects of hunting pressure on wildlife by comparing how two communities of mammals under different management schemes differ in their relative abundance and response to humans. Using camera traps to survey wildlife across disturbance levels (yards, farms, forests) in similar landscapes in southern Germany and southeastern USA, we tested the prediction of the risk allocation hypothesis: that the higher intensity and longevity of hunting in Germany (year round vs 3 months, 4x higher harvest/km2/year) would reduce relative abundance of hunted species and result in a larger fear-based response to humans (i.e., more spatial and temporal avoidance). We further evaluated how changes in animal abundance and behavior would result in potential changes to ecological impacts (i.e., herbivory and predation). We found that hunted species were relatively less abundant in Germany and less associated with humans on the landscape (i.e., yards and urban areas), but did not avoid humans temporally in hunted areas while hunted species in the USA showed the opposite pattern. These results are consistent with the risk allocation hypothesis where we would expect more spatial avoidance in response to threats of longer duration (i.e., year-round hunting in Germany vs. 3-month duration in USA) and less spatial avoidance but more temporal avoidance for threats of shorter duration. The expected ecological impacts of mammals in all three habitats were quite different between countries, most strikingly due to the decreases in the relative abundance of hunted species in Germany, particularly deer, with no proportional increase in unhunted species, resulting in American yards facing the potential for 25x more herbivory than German yards. Our results suggest that the duration and intensity of managed hunting can have strong and predictable effects on animal abundance and behavior, with the potential for corresponding changes in the ecological impacts of wildlife. Hunting can be an effective tool for reducing wildlife conflict due to overabundance but may require more intensive harvest than is seen in much of North America.

Keywords