Machines (Dec 2024)
Design of Active Suspension Controllers for 8 × 8 Armored Combat Vehicles
Abstract
This paper presents a method to design an active suspension controller for 8 × 8 armored combat vehicles, which is called corner damping control (CDC). It is assumed that the target vehicle with 8 × 8 drive mechanisms and 8 suspensions has active actuators on each suspension for vertical, roll and pitch motion control on a sprung mass. A state-space model with 22 state variables is derived from the target vehicle. With the state-space model, a linear quadratic (LQ) cost function is defined. The control objective is to reduce the vertical acceleration, pitch and roll angles of a sprung mass for ride comfort, durability and turret stabilization. To avoid full-state feedback of LQR, a static output feedback control (SOF) is selected as a control structure for CDC. The vertical velocity, roll and pitch rates of a sprung mass, and vertical velocities at each corner, are selected as a sensor output. With those sensor outputs and LQ cost function, four LQ SOF controllers are designed. To validate the effectiveness of the LQ SOF controllers, simulation is carried out on a vehicle simulation package. From the simulation results, it is shown that the proposed CDC with LQ SOF controllers with a much smaller number of sensor outputs and controller gains can reduce the vertical acceleration, pitch and roll angles of a sprung mass and, as a result, improve ride comfort, durability and turret stabilization.
Keywords