Electronic Journal of Qualitative Theory of Differential Equations (Feb 2015)

On a system of $m$ difference equations having exponential terms

  • Garyfalos Papaschinopoulos,
  • N. Psarros,
  • K.B. Papadopoulos

DOI
https://doi.org/10.14232/ejqtde.2015.1.5
Journal volume & issue
Vol. 2015, no. 5
pp. 1 – 13

Abstract

Read online

In this paper we study the asymptotic behavior of the positive solutions of a cyclic system of the following $m$ difference equations: \begin{align*} x^{(i)}_{n+1}&=a_ix_n^{(i+1)}+b_i x^{(i)}_{n-1}e^{{-x^{(i+1)}_n}},\qquad i=1,2,\ldots, m-1,\\ x^{(m)}_{n+1}&=a_mx^{(1)}_n+b_m x^{(m)}_{n-1}e^{{-x^{(1)}_n}}, \end{align*} where $n=0,1,\ldots$, and $a_i,\ b_i$, $i=1,2,\ldots,m$ are positive constants and the initial values $x^{(i)}_{-1}, x^{(i)}_0$, $i=1,2,\ldots,m$ are positive numbers.

Keywords