Energies (Nov 2023)

Implementation Process Simulation and Performance Analysis for the Multi-Timescale Lookup-Table-Based Maximum Power Point Tracking under Variable Irregular Waves

  • Xuhui Yue,
  • Feifeng Meng,
  • Zhoubo Tong,
  • Qijuan Chen,
  • Dazhou Geng,
  • Jiaying Liu

DOI
https://doi.org/10.3390/en16227501
Journal volume & issue
Vol. 16, no. 22
p. 7501

Abstract

Read online

The efficacy of the multi-timescale lookup-table-based maximum power point tracking (MLTB MPPT) in capturing energy at various fixed sea states has already been demonstrated. However, it remains imperative to conduct a more comprehensive evaluation of the MPPT tracking performance under varying sea states in practical scenarios. Additionally, it is crucial to engage in an in-depth analysis of the dynamic process and energy loss/consumption associated with MLTB MPPT implementations. This paper focuses on the implementation process simulation and performance analysis for the MLTB MPPT under variable irregular waves. Firstly, the structure of the wave power controller based on a MLTB MPPT algorithm is described in detail, as well as that of a controlled plant, known as a novel inverse-pendulum wave energy converter (NIPWEC). Secondly, mathematical models for the MLTB MPPT are developed, taking into account the efficiency of each link. In this paper, we present simplified modelling methods for both permanent magnet synchronous generator (PMSG) vector control and permanent magnet synchronous motor (PMSM) servo control. Finally, the tracking performance of the MLTB MPPT in the presence of variable irregular waves is comprehensively analyzed by simulating the implementation process and comparing it with two other MPPT algorithms, i.e., the frequency- and amplitude-control-based MPPT and the lookup-table-based internal mass position adjustment combined with the optimal fixed damping search. Results show that the MLTB MPPT (Method 2) is a competitive algorithm. Besides, a significant portion (>12%) of the time-averaged absorbed power is actually lost during the power generation process. On the other hand, the power required for a mass-position-adjusting mechanism is relatively small (approximately 0.2 kW, <1.5%). The research findings can offer theoretical guidance for optimizing the operation of NIPWEC engineering prototypes under actual sea conditions.

Keywords