Laboratório de Farmacologia e Bioquímica (LFBq), Departamento de Medicina Veterinária, Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP 13635-900, Brazil
Júlio Abel Alfredo dos Santos Simone Come
Laboratório de Farmacologia e Bioquímica (LFBq), Departamento de Medicina Veterinária, Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP 13635-900, Brazil
Simone Brogi
Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
Vincenzo Calderone
Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
Giulia Chemi
Department of Biotechnology, Chemistry, and Pharmacy, DoE Department of Excellence 2018–2022 Università degli Studi di Siena via Aldo Moro 2, 53100 Siena, Italy
Giuseppe Campiani
Department of Biotechnology, Chemistry, and Pharmacy, DoE Department of Excellence 2018–2022 Università degli Studi di Siena via Aldo Moro 2, 53100 Siena, Italy
Trícia Maria Ferrreira de Sousa Oliveira
Laboratório de Farmacologia e Bioquímica (LFBq), Departamento de Medicina Veterinária, Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP 13635-900, Brazil
Thanh-Nhat Pham
PEPITE EA4267, University Bourgogne Franche-Comté, F-25000 Besançon, France
Marc Pudlo
PEPITE EA4267, University Bourgogne Franche-Comté, F-25000 Besançon, France
Corine Girard
PEPITE EA4267, University Bourgogne Franche-Comté, F-25000 Besançon, France
Claudia do Carmo Maquiaveli
Laboratório de Farmacologia e Bioquímica (LFBq), Departamento de Medicina Veterinária, Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos, Pirassununga, SP 13635-900, Brazil
Caffeic acid and related natural compounds were previously described as Leishmania amazonensis arginase (L-ARG) inhibitors, and against the whole parasite in vitro. In this study, we tested cinnamides that were previously synthesized to target human arginase. The compound caffeic acid phenethyl amide (CAPA), a weak inhibitor of human arginase (IC50 = 60.3 ± 7.8 μM) was found to have 9-fold more potency against L-ARG (IC50 = 6.9 ± 0.7 μM). The other compounds that did not inhibit human arginase were characterized as L-ARG, showing an IC50 between 1.3–17.8 μM, and where the most active was compound 15 (IC50 = 1.3 ± 0.1 μM). All compounds were also tested against L. amazonensis promastigotes, and only the compound CAPA showed an inhibitory activity (IC50 = 80 μM). In addition, in an attempt to gain an insight into the mechanism of competitive L-ARG inhibitors, and their selectivity over mammalian enzymes, we performed an extensive computational investigation, to provide the basis for the selective inhibition of L-ARG for this series of compounds. In conclusion, our results indicated that the compounds based on cinnamoyl or 3,4-hydroxy cinnamoyl moiety could be a promising starting point for the design of potential antileishmanial drugs based on selective L-ARG inhibitors.