EURASIP Journal on Wireless Communications and Networking (Oct 2020)

Echo simulation of dual polarization Doppler weather radar based on the physical model

  • Qutie JieLa,
  • Haijiang Wang,
  • Shipeng Hu,
  • Jiahui Zhu,
  • Mengqing Gao

DOI
https://doi.org/10.1186/s13638-020-01811-4
Journal volume & issue
Vol. 2020, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Using the scattering characteristics of particles to simulate the radar echo can supply the test signals close to the real precipitation echo for the weather radar and save the time and cost of the research and development and maintenance of the weather radar. In this paper, the precipitation echo of weather radar is simulated based on the theoretical basis that the falling raindrops have a shape well approximated by an oblate spheroid in the atmosphere. The Marshal-Palmer distribution is applied to describe the raindrop spectrum distribution of precipitation particles. It is assumed that the raindrop particles of different sizes have the random distribution in the radar resolution volume, and then the spatial distribution of precipitation particles in the resolution volume is modeled. The echo signals of horizontal and vertical polarization channels of dual-polarization weather radar are obtained by vector superposition of backscattering echoes of each particle. The experimental results show that this method can describe the microphysical characteristics of precipitation particles more completely and can be used to test the signal processing module of dual-polarization Doppler weather radar.

Keywords