Nauka ta progres transportu (Oct 2016)
EXPERIMENTAL INVESTIGATIONS OF INTERACTION OF TRACK AND ROLLING STOCK ON CROSSOVERS
Abstract
Purpose. Recently on the Ukrainian railways network more attention is paid to the cases of violations in the maintenance of crossovers, which may lead to deterioration of the train traffic safety conditions. As a rule, such violations occur as a result of inaccuracies during crossover pegging and laying, as well as are the consequence of impact of rolling stock and thermal forces. The appearance of geometrical irregularities can also be triggered by violation of the scheme of layout of concrete sleepers in the crossover turnout curve with intertrack spaces of less than 5.3 m. Therefore, we have decided to analyze the impact of the presence of deviations from the layout scheme of the sleepers and geometric irregularities on the conditions of track and rolling stock interaction based on the results of experimental investigations. It was also decided to establish a connection between the stress-strain states of the track and the presence of short sleepers. Methodology. The effect of deviations from the layout scheme of the sleepers and geometric irregularities on the interaction conditions of track and rolling stock was studied by means of theoretical calculations and experimental research. The experimental research covered the area on the non-public railway tracks that meets the required conditions for scientific and research work on the territory of «Transinvestservice» company. Findings. The distribution of stresses and forces acting on a railway track depending on speed movement of experienced rolling stock was obtained. In addition we obtained the data on the influence of the sleeper geometric parameters on its stress-strain state. Originality. For the first time the paper assessed the impact of rolling stock in the presence of geometrical irregularities and asymmetrically truncated sleepers within the crossover connection part on the stress-strain state of track in this zone. In addition, we compared the results for the area with common and shortened sleepers. Practical value. The obtained experimental data allowed determining that the stress-strain state of the track structure in the crossover turnout curve at rolling stock speeds of up to 40 km/h fulfills the conditions of strength and stability. These results can be used to test mathematical models and theoretical studies on the development of standards for the maintenance of crossovers. The level of the obtained vertical, lateral forces and stresses practically does not depend on the presence of the truncated part of the sleepers, which are stacked in crossovers.
Keywords