Acta Universitatis Sapientiae: Mathematica (Aug 2017)
Existence and uniqueness of solution for a class of nonlinear degenerate elliptic equation in weighted Sobolev spaces
Abstract
In this work we are interested in the existence and uniqueness of solutions for the Navier problem associated to the degenerate nonlinear elliptic equations Δ(v(x)|Δu|r−2Δu)−∑j=1nDj[w1(x)𝒜j(x,u,∇u)]+ b(x,u,∇u) w2(x)=f0(x)−∑j=1nDjfj(x), in Ω$$\matrix{{\Delta {\rm{(v}}({\rm{x}})\left| {\Delta {\rm{u}}} \right|^{{\rm{r}} - 2} \Delta {\rm{u}}) - \sum\limits_{{\rm{j}} = 1}^{\rm{n}} {{\rm{D}}_{\rm{j}} [{\rm{w}}_1 ({\rm{x}}){\cal{A}}_{\rm{j}} ({\rm{x}},{\rm{u}},\nabla {\rm{u}})]} } \hfill \cr { + \;{\rm{b}}({\rm{x}},{\rm{u}},\nabla {\rm{u}})\;{\rm{w}}_2 ({\rm{x}}) = {\rm{f}}_0 ({\rm{x}}) - \sum\limits_{{\rm{j}} = 1}^{\rm{n}} {{\rm{D}}_{\rm{j}} {\rm{f}}_{\rm{j}} ({\rm{x}}),\;\;\;\;\;{\rm{in}}\;\Omega } }}$$ in the setting of the Weighted Sobolev Spaces.
Keywords