Journal of Experimental & Clinical Cancer Research (Sep 2019)

Nuclear FAM289-Galectin-1 interaction controls FAM289-mediated tumor promotion in malignant glioma

  • Xing Rong Guo,
  • Mu Yu Wu,
  • Long Jun Dai,
  • Yu Huang,
  • Meng Ye Shan,
  • Shi Nan Ma,
  • Jue Wang,
  • Hao Peng,
  • Yan Ding,
  • Qiu Fang Zhang,
  • Jun Ming Tang,
  • Xu Zhi Ruan,
  • Dong Sheng Li

DOI
https://doi.org/10.1186/s13046-019-1393-7
Journal volume & issue
Vol. 38, no. 1
pp. 1 – 19

Abstract

Read online

Abstract Background FAM92A1–289(abbreviated FAM289) is recognized as one of the newly-discovered putative oncogenes. However, its role and molecular mechanisms in promoting cancer progression has not yet been elucidated. This study was performed to reveal its oncogenic functions and molecular mechanisms in human glioblastoma multiforme (GBM) cell models with knockdown or overexpression of FAM289 in vitro and in vivo. Methods To elucidate the molecular mechanisms underlying FAM289-mediated tumor progression, the protein-protein interaction between FAM289 and Galectin-1 was verified by co-immunoprecipitation, followed by an analysis of the expression and activity of Galectin-1-associated signaling molecules. Knockdown and overexpression of FAM289 in glioma cells were applied for investigating the effects of FAM289 on cell growth, migration and invasion. The determination of FAM289 expression was performed in specimens from various stages of human gliomas. Results FAM289-galectin-1 interaction and concomitant activation of the extracellular signal-regulated kinase (ERK) pathway participated in FAM289-mediated tumor-promoting function. Since the expression of DNA methyl transferase 1 (DNMT1) and DNA methyl transferase 3B (DNMT3B) was regulated by FAM289 in U251 and U87-MG glioma cells, Galectin-1 interaction with FAM289 may promote FAM289 protein into the cell nucleus and activate the ERK pathway, thereby upregulating DNMTs expression. Drug resistance tests indicated that FAM289-mediated TMZ resistance was through stem-like property acquisition by activating the ERK pathway. The correlation between FAM289, Galectin-1 expression and the clinical stage of gliomas was also verified in tissue samples from glioblastoma patients. Conclusions Our results suggest that high expression of FAM289 in GBM tissues correlated with poor prognosis. FAM289 contributes to tumor progression in malignant glioma by interacting with Galectin-1 thereby promoting FAM289 protein translocation into the cell nucleus. FAM289 in the nucleus activated the ERK pathway, up regulated DNMTs expression and induced stem-like property gene expression which affects drug resistance of glioma cells to TMZ. This study provided functional evidence for FAM289 to be developed as a therapeutic target for cancer treatment.

Keywords