IEEE Transactions on Neural Systems and Rehabilitation Engineering (Jan 2022)
An Auxiliary Diagnostic System for Parkinson’s Disease Based on Wearable Sensors and Genetic Algorithm Optimized Random Forest
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized mainly by motor-related impairment, an accurate, quantitative, and objective diagnosis is an effective way to slow the disease deterioration process. In this paper, a user-friendly auxiliary diagnostic system for PD is constructed based on the upper limb movement conditions of 100 subjects consisting of 50 PD patients and 50 healthy subjects. This system includes wearable sensors that collect upper limb movement data, host computer for data processing and classification, and graphic user interface (GUI). The genetic algorithm optimized random forest classifier is introduced to classify PD and normal states based on the selected optimal features, and the 50 trials leave-one-out cross-validation is used to evaluate the performance of the classifier, with the highest accuracy of 94.4%. The classification accuracy among different upper limb movement tasks and with the different number of sensors are compared, results show that the task with only alternation hand movement also has satisfactory classification accuracy, and sensors on both wrists performance better than one sensor on a single wrist. The utility of the proposed system is illustrated by neurologists with a deployed GUI during the clinical inquiry, opening the possibility for a wide range of applications in the auxiliary diagnosis of PD.
Keywords