Toxins (Mar 2024)
Immunochemical Recognition of <i>Bothrops rhombeatus</i> Venom by Two Polyvalent Antivenoms
Abstract
The protein profile of Bothrops rhombeatus venom was compared to Bothrops asper and Bothrops atrox, and the effectiveness of antivenoms from the National Institute of Health of Colombia (INS) and Antivipmyn-Tri (AVP-T) of Mexico were analyzed. Protein profiles were studied with sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and reverse-phase high-performance liquid chromatography (RP-HPLC). The neutralizing potency and the level of immunochemical recognition of the antivenoms to the venoms were determined using Western blot, affinity chromatography, and enzyme-linked immunosorbent assay (ELISA). Bands of phospholipase A2 (PLA2), metalloproteinases (svMPs) I, II, and III as well as serine proteinases (SPs) in the venom of B. rhombeatus were recognized by SDS-PAGE. With Western blot, both antivenoms showed immunochemical recognition towards PLA2 and svMP. INS showed 94% binding to B. rhombeatus venom and 92% to B. asper while AVP-T showed 90.4% binding to B. rhombeatus venom and 96.6% to B. asper. Both antivenoms showed binding to PLA2 and svMP, with greater specificity of AVP-T towards B. rhombeatus. Antivenom neutralizing capacity was calculated by species and mL of antivenom, finding the following for INS: B. asper 6.6 mgV/mL, B. atrox 5.5 mgV/mL, and B. rhombeatus 1.3 mgV/mL. Meanwhile, for AVP-T, the following neutralizing capacities were found: B. asper 2.7 mgV/mL, B. atrox 2.1 mgV/mL, and B. rhombeatus 1.4 mgV/mL. These results show that both antivenoms presented similarity between calculated neutralizing capacities in our trial, reported in a product summary for the public for the B. asper species; however, this does not apply to the other species tested in this trial.
Keywords