ITM Web of Conferences (Jan 2022)
Novel Integration of Wi-Fi Signal and Magnetometer Sensor Measurements in Fingerprinting Technique for Indoors Smartphone positioning
Abstract
Smartphones are becoming more widespread, and location-based services (LBS) have become one of the most important uses in people’s daily lives. While outdoor location is reasonably simple thanks to GNSS signals, however, indoor location is more problematic due to the lack of GNSS signals. As a result of the widespread deployment of alternative technologies such as wireless and sensors technologies, various studies on wireless-based indoor positioning have been conducted. However, each technology has its own limitations including multipath fading of wireless signals causes time-varying received signal strength as well as the accumulated error of the onboard sensors (i.e. sensor drift) resulting in poor localization accuracy. Motivated by these restrictions, this work integrates the applicability of two technologies for indoor positioning that are already available in smartphones by avoiding their limitation. The integration is based on fingerprinting-positioning technique by including magnetometer sensor measurements and WiFi signal strength. Android-based smartphones with low-cost sensors in real indoor scenarios are utilized to create a dataset and collect independent track tests to confirm results. The performance of different scenarios, such as Wi-Fi alone, magnetometer alone, and magnetometer-aided Wi-Fi, is compared. The experimental results show that the combination of magnetometer sensor and WiFi signal strength provides significant results in which leads to reducing the location error to 0.7224 meters.