Applied Sciences (Nov 2024)
Enhanced Magnetic Resonance Imaging-Based Brain Tumor Classification with a Hybrid Swin Transformer and ResNet50V2 Model
Abstract
Brain tumors can be serious; consequently, rapid and accurate detection is crucial. Nevertheless, a variety of obstacles, such as poor imaging resolution, doubts over the accuracy of data, a lack of diverse tumor classes and stages, and the possibility of misunderstanding, present challenges to achieve an accurate and final diagnosis. Effective brain cancer detection is crucial for patients’ safety and health. Deep learning systems provide the capability to assist radiologists in quickly and accurately detecting diagnoses. This study presents an innovative deep learning approach that utilizes the Swin Transformer. The suggested method entails integrating the Swin Transformer with the pretrained deep learning model Resnet50V2, called (SwT+Resnet50V2). The objective of this modification is to decrease memory utilization, enhance classification accuracy, and reduce training complexity. The self-attention mechanism of the Swin Transformer identifies distant relationships and captures the overall context. Resnet 50V2 improves both accuracy and training speed by extracting adaptive features from the Swin Transformer’s dependencies. We evaluate the proposed framework using two publicly accessible brain magnetic resonance imaging (MRI) datasets, each including two and four distinct classes, respectively. Employing data augmentation and transfer learning techniques enhances model performance, leading to more dependable and cost-effective training. The suggested model achieves an impressive accuracy of 99.9% on the binary-labeled dataset and 96.8% on the four-labeled dataset, outperforming the VGG16, MobileNetV2, Resnet50V2, EfficientNetV2B3, ConvNeXtTiny, and convolutional neural network (CNN) algorithms used for comparison. This demonstrates that the Swin transducer, when combined with Resnet50V2, is capable of accurately diagnosing brain tumors. This method leverages the combination of SwT+Resnet50V2 to create an innovative diagnostic tool. Radiologists have the potential to accelerate and improve the detection of brain tumors, leading to improved patient outcomes and reduced risks.
Keywords