Journal of Lipid Research (Feb 1985)
Role of very low density lipoproteins in the energy metabolism of the rat.
Abstract
The role of very low density lipoproteins (VLDL) in the energy metabolism of conscious, 24-hr fasted rats was studied. VLDL labeled with [2-3H]glycerol and [1-14C]palmitate were infused into the rats, along with [1-13C]palmitate bound to albumin and d-8-glycerol, and various metabolic factors were assessed. The rates of appearance in plasma of fatty acids in VLDL and albumin-bound free fatty acids (FFA) were about equal, on a molar basis, and only a small fraction of the FFA flux was derived from VLDL. The rate of direct oxidation of the fatty acids from VLDL was 4.4 +/- 0.9 mumol of FA/kg X min, as compared with the value of 4.0 +/- 0.42 mumol of FA/kg X min for plasma FFA. Four percent of the plasma glycerol flux was derived from VLDL. Thus, the direct oxidation of fatty acids in VLDL played an important role in the energy metabolism of the rats, accounting for a percentage of the total CO2 production that was equal to the amount that arose from the oxidation of plasma FFA. The oxidation of VLDL-fatty acids did not involve prior entry of the fatty acids into the plasma FFA pool to any significant extent.