Discrete Mathematics & Theoretical Computer Science (Jan 2013)
Extending the parking space
Abstract
The action of the symmetric group $S_n$ on the set $\mathrm{Park}_n$ of parking functions of size $n$ has received a great deal of attention in algebraic combinatorics. We prove that the action of $S_n$ on $\mathrm{Park}_n$ extends to an action of $S_{n+1}$. More precisely, we construct a graded $S_{n+1}$-module $V_n$ such that the restriction of $V_n$ to $S_n$ is isomorphic to $\mathrm{Park}_n$. We describe the $S_n$-Frobenius characters of the module $V_n$ in all degrees and describe the $S_{n+1}$-Frobenius characters of $V_n$ in extreme degrees. We give a bivariate generalization $V_n^{(\ell, m)}$ of our module $V_n$ whose representation theory is governed by a bivariate generalization of Dyck paths. A Fuss generalization of our results is a special case of this bivariate generalization.
Keywords