Journal of Experimental Neuroscience (Apr 2017)

Audiovisual Distraction Increases Prefrontal Cortical Neuronal Activity and Impairs Attentional Performance in the Rat

  • Douglas G Ririe,
  • MD Boada,
  • Benjamin S Schmidt,
  • Salem J Martin,
  • Susy A Kim,
  • Thomas J Martin

DOI
https://doi.org/10.1177/1179069517703080
Journal volume & issue
Vol. 11

Abstract

Read online

Involvement of attentional processes is generally evidenced by disruption of behavior in the presence of distracting stimuli. The medial prefrontal cortex (mPFC) seems to play a role in fine-tuning activity during attentional tasks. A novel titration variant of the 5-choice serial reaction time task (5-choice serial reaction time titration variant [5CTV]) that adjusts task difficulty based on subject performance was used to evaluate the effects of audiovisual distraction (DSTR) on performance and mPFC single spike activity and local field potential (LFP). Attention was impaired in the 5CTV from DSTR, and mPFC spike activity was increased, whereas LFP was reduced. The increased spike activity in the mPFC in conjunction with DSTR suggests that conflicting attentional demands may contribute to the reduced task performance. As both hypo- and hyperactivation of the mPFC may contribute to attentional disruption, further studies using the 5CTV are needed to understand mPFC activity changes in real time during disruption of performance by other types of behavioral or neurobiological manipulations.