Frontiers in Artificial Intelligence (Jun 2022)

Leveraging Open Electronic Health Record Data and Environmental Exposures Data to Derive Insights Into Rare Pulmonary Disease

  • Karamarie Fecho,
  • Stanley C. Ahalt,
  • Michael Knowles,
  • Ashok Krishnamurthy,
  • Margaret Leigh,
  • Kenneth Morton,
  • Emily Pfaff,
  • Max Wang,
  • Hong Yi

DOI
https://doi.org/10.3389/frai.2022.918888
Journal volume & issue
Vol. 5

Abstract

Read online

Research on rare diseases has received increasing attention, in part due to the realized profitability of orphan drugs. Biomedical informatics holds promise in accelerating translational research on rare disease, yet challenges remain, including the lack of diagnostic codes for rare diseases and privacy concerns that prevent research access to electronic health records when few patients exist. The Integrated Clinical and Environmental Exposures Service (ICEES) provides regulatory-compliant open access to electronic health record data that have been integrated with environmental exposures data, as well as analytic tools to explore the integrated data. We describe a proof-of-concept application of ICEES to examine demographics, clinical characteristics, environmental exposures, and health outcomes among a cohort of patients enriched for phenotypes associated with cystic fibrosis (CF), idiopathic bronchiectasis (IB), and primary ciliary dyskinesia (PCD). We then focus on a subset of patients with CF, leveraging the availability of a diagnostic code for CF and serving as a benchmark for our development work. We use ICEES to examine select demographics, co-diagnoses, and environmental exposures that may contribute to poor health outcomes among patients with CF, defined as emergency department or inpatient visits for respiratory issues. We replicate current understanding of the pathogenesis and clinical manifestations of CF by identifying co-diagnoses of asthma, chronic nasal congestion, cough, middle ear disease, and pneumonia as factors that differentiate patients with poor health outcomes from those with better health outcomes. We conclude by discussing our preliminary findings in relation to other published work, the strengths and limitations of our approach, and our future directions.

Keywords