IEEE Transactions on Neural Systems and Rehabilitation Engineering (Jan 2024)

SleepFC: Feature Pyramid and Cross-Scale Context Learning for Sleep Staging

  • Wei Li,
  • Teng Liu,
  • Baoguo Xu,
  • Aiguo Song

DOI
https://doi.org/10.1109/TNSRE.2024.3406383
Journal volume & issue
Vol. 32
pp. 2198 – 2208

Abstract

Read online

Automated sleep staging is essential to assess sleep quality and treat sleep disorders, so the issue of electroencephalography (EEG)-based sleep staging has gained extensive research interests. However, the following difficulties exist in this issue: 1) how to effectively learn the intrinsic features of salient waves from single-channel EEG signals; 2) how to learn and capture the useful information of sleep stage transition rules; 3) how to address the class imbalance problem of sleep stages. To handle these problems in sleep staging, we propose a novel method named SleepFC. This method comprises convolutional feature pyramid network (CFPN), cross-scale temporal context learning (CSTCL), and class adaptive fine-tuning loss function (CAFTLF) based classification network. CFPN learns the multi-scale features from salient waves of EEG signals. CSTCL extracts the informative multi-scale transition rules between sleep stages. CAFTLF-based classification network handles the class imbalance problem. Extensive experiments on three public benchmark datasets demonstrate the superiority of SleepFC over the state-of-the-art approaches. Particularly, SleepFC has a significant performance advantage in recognizing the N1 sleep stage, which is challenging to distinguish.

Keywords