Microbiology Spectrum (Apr 2022)
Development of the First Tractable Genetic System for Parvimonas micra, a Ubiquitous Pathobiont in Human Dysbiotic Disease
Abstract
ABSTRACT Parvimonas micra is a Gram-positive obligate anaerobe and a typical member of the human microbiome. P. micra is among the most highly enriched species at numerous sites of mucosal dysbiotic disease and is closely associated with the development of multiple types of malignant tumors. Despite its strong association with disease, surprisingly little is known about P. micra pathobiology, which is directly attributable to its longstanding genetic intractability. To address this problem, we directly isolated a collection of P. micra strains from odontogenic abscess clinical specimens and then screened these isolates for natural competence. Amazingly, all of the P. micra clinical isolates exhibited various levels of natural competence, including the reference strain ATCC 33270. By exploiting this ability, we were able to employ cloning-independent methodologies to engineer and complement a variety of targeted chromosomal genetic mutations directly within low-passage-number clinical isolates. To develop a tractable genetic system for P. micra, we first adapted renilla-based bioluminescence for highly sensitive reporter studies. This reporter system was then applied for the development of the novel Theo+ theophylline-inducible riboswitch for tunable gene expression studies over a broad dynamic range. Finally, we demonstrate the feasibility of generating mariner-based transposon sequencing (Tn-seq) libraries for forward genetic screening in P. micra. With the availability of a highly efficient transformation protocol and the current suite of genetic tools, P. micra should now be considered a fully genetically tractable organism suitable for molecular genetic research. The methods presented here provide a clear path to investigate the understudied role of P. micra in polymicrobial infections and tumorigenesis. IMPORTANCE Parvimonas micra is among the most highly enriched species at numerous sites of mucosal dysbiotic disease and is closely associated with numerous cancers. Despite this, little is known about P. micra pathobiology, which is directly attributable to its longstanding genetic intractability. In this study, we provide the first report of P. micra natural competence and describe the only tractable genetic system for this species. The methods presented here will allow for the detailed study of P. micra and its role in infection and tumorigenesis.
Keywords