MATEC Web of Conferences (Jan 2016)
Combined Ultrasonic Elliptical Vibration and Chemical Mechanical Polishing of Monocrystalline Silicon
Abstract
An ultrasonic elliptical vibration assisted chemical mechanical polishing(UEV-CMP) is employed to achieve high material removal rate and high surface quality in the finishing of hard and brittle materials such as monocrystalline silicon, which combines the functions of conventional CMP and ultrasonic machining. In theultrasonic elliptical vibration aided chemical mechanical polishingexperimental setup developed by ourselves, the workpiece attached at the end of horn can vibrate simultaneously in both horizontal and vertical directions. Polishing experiments are carried out involving monocrystalline silicon to confirm the performance of the proposed UEV-CMP. The experimental results reveal that the ultrasonic elliptical vibration can increase significantly the material removal rate and reduce dramatically the surface roughness of monocrystalline silicon. It is found that the removal rate of monocrystalline silicon polished by UEV-CMP is increased by approximately 110% relative to that of conventional CMP because a passive layer on the monocrystalline silicon surface, formed by the chemical action of the polishing slurry, will be removed not only by the mechanical action of CMP but also by ultrasonic vibration action. It indicates that the high efficiency and high quality CMP of monocrystalline silicon can be performed with the proposed UEV-CMP technique.