Journal of Circadian Rhythms (May 2010)

Aging related changes of circadian rhythmicity of cytotoxic lymphocyte subpopulations

  • Carughi Stefano,
  • Dagostino Mariangela,
  • Marzulli Nunzia,
  • Damato Marcello,
  • Greco Antonio,
  • De Cata Angelo,
  • Mazzoccoli Gianluigi,
  • Perfetto Federico,
  • Tarquini Roberto

DOI
https://doi.org/10.1186/1740-3391-8-6
Journal volume & issue
Vol. 8, no. 1
p. 6

Abstract

Read online

Abstract Background Immunosenescence is a process that affects all cell compartments of the immune system and the contribution of the immune system to healthy aging and longevity is still an open question. Lymphocyte subpopulations present different patterns of circadian variation and in the elderly alteration of circadian rhythmicity has been evidenced. The aim of our study was to analyze the dynamics of variation of specific cytotoxic lymphocyte subsets in old aged subjects. Methods Lymphocyte subpopulation analyses were performed and cortisol serum levels were measured on blood samples collected every four hours for 24 hours from fifteen healthy male young-middle aged subjects (age range 36-55 years) and fifteen healthy male old aged subjects (age range 67-79 years). Results In healthy young-middle aged subjects CD20 were higher and at 06:00 h CD8+ dim correlated positively with CD16+ and positively with γδTCR+ cells, CD16 correlated positively with γδTCR+ cells At 18:00 h CD8+ dim correlated positively with CD16+ and positively with γδTCR+ cells, CD16+ correlated positively with γδTCR+ cells and a clear circadian rhythm was validated for the time-qualified changes of CD3+, CD4+, CD20+, CD25+ and HLA-DR+ cells with acrophase during the night and for the time-qualified changes of CD8+, CD8+ bright, CD8+ dim, CD16+ and γδTCR+ cells with acrophase during the day. In old aged subjects CD25, DR+ T cells and cortisol serum levels were higher, but there was no statistically significant correlation among lymphocyte subpopulations and a clear circadian rhythm was evidenced for time-qualified changes of CD3+ and CD25+ cells with acrophase during the night and for the time-qualified changes of CD8+ cells and cortisol with acrophase during the day. Conclusion Our study has evidenced aging-related changes of correlation and circadian rhythmicity of variation of cytotoxic lymphocyte subpopulations that might play a role in the alteration of immune system function in the elderly.