International Journal of Computational Intelligence Systems (Aug 2014)

Software Fault Estimation Framework based on aiNet

  • Qian Yin,
  • Ruiyi Luo,
  • Ping Guo

DOI
https://doi.org/10.1080/18756891.2013.858907
Journal volume & issue
Vol. 7, no. 4

Abstract

Read online

Software fault prediction techniques are helpful in developing dependable software. In this paper, we proposed a novel framework that integrates testing and prediction process for unit testing prediction. Because high fault prone metrical data are much scattered and multi-centers can represent the whole dataset better, we used artificial immune network (aiNet) algorithm to extract and simplify data from the modules that have been tested, then generated multi-centers for each network by Hierarchical Clustering. The proposed framework acquires information along with the testing process timely and adjusts the network generated by aiNet algorithm dynamically. Experimental results show that higher accuracy can be obtained by using the proposed framework.

Keywords