Remote Sensing (May 2019)
On the Methods for Recalibrating Geostationary Longwave Channels Using Polar Orbiting Infrared Sounders
Abstract
This study presents a common recalibration method that has been applied to geostationary imagers’ infrared (IR) and water vapour (WV) channel measurements, referred to as the multi-sensor infrared channel calibration (MSICC) method. The method relies on data of the Infrared Atmospheric Sounding Interferometer (IASI), Atmospheric Infrared Sounder (AIRS), and High-Resolution Infrared Radiation Sounder (HIRS/2) on polar orbiting satellites. The geostationary imagers considered here are VISSR/JAMI/IMAGER on JMA’s GMS/MTSAT series and MVIRI/SEVIRI on EUMETSAT’s METEOSAT series. IASI hyperspectral measurements are used to determine spectral band adjustment factors (SBAF) that account for spectral differences between the geostationary and polar orbiting satellite measurements. A new approach to handle the spectral gaps of AIRS measurements using IASI spectra is developed and demonstrated. Our method of recalibration can be directly applied to the lowest level of geostationary measurements available, i.e., digital counts, to obtain recalibrated radiances. These radiances are compared against GSICS-corrected radiances and are validated against SEVIRI radiances, both during overlapping periods. Significant reduction in biases have been observed for both IR and WV channels, 4% and 10%, respectively compared to the operational radiances.
Keywords