Ecotoxicology and Environmental Safety (Nov 2024)

The role of NLRP3 inflammasome-mediated neuroinflammation in chronic noise-induced impairment of learning and memory ability

  • Yixian Ren,
  • Kangyong Wu,
  • Yongke He,
  • Hangqian Zhang,
  • Jialao Ma,
  • Caixia Li,
  • Yanmei Ruan,
  • Jinwei Zhang,
  • Ying Wen,
  • Xian Wu,
  • Siran Chen,
  • Heng Qiu,
  • Yifan Zhang,
  • Liping Zhou,
  • Zejin Ou,
  • Jiabin Liang,
  • Zhi Wang

Journal volume & issue
Vol. 286
p. 117183

Abstract

Read online

Background: Noise pollution pervades daily working and living environment, becoming a serious public health problem. In addition to causing auditory impairment, noise independently contributes to cognitive decline as a risk factor. Though neuroinflammation plays an important role in noise-induced cognitive deficits, the mechanisms underlying noise-induced neuroinflammation in the hippocampus are still poorly understood. Glial hyperactivation of the NLRP3 inflammasome contributes to various neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). However, whether the NLRP3 inflammasome plays a role in noise-induced cognitive impairment remains to be further investigated. Methods: Adult male Wistar rats were exposed to 100 dB white noise (4 h/day) for 30 days with or without injection of the NLRP3 inhibitor MCC950 (10 mg/kg/day). The Morris water maze (MWM) test and the open field test (OFT) were performed to evaluate learning and memory ability of rats. HE staining was used to explore hippocampal pathological changes, while immunohistochemical staining was employed to evaluate the number and morphology of microglia and astrocytes. The mRNA levels of the NLRP3 inflammasome in the hippocampus were examined by Real-time PCR. The protein levels of NLRP3 inflammasome, inflammatory cytokines, p-Tau-S396, and amyloid-β (Aβ) 42 in the hippocampus were examined by Western blot. Immunofluorescence was used to observe the distribution of NLRP3 in glial cells and neurons, and the assembly of the NLRP3 inflammasome. Results: We found that noise exposure induced learning and memory impairment in rats, mainly related to the activation of microglia and astrocytes in hippocampus region. Noise exposure increased the protein levels of p-Tau-S396, Aβ42, ionized calcium binding adapter molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), interleukin (IL)-1β, IL-18, and tumor necrosis factor-α (TNF-α) in hippocampus. Furthermore, the hippocampus of noise-exposed rats showed elevated protein levels of NLRP3, ASC and cleaved caspase-1. The co-labeled immunofluorescence levels of Iba-1 or GFAP with NLRP3 significantly increased in the dentate gyrus (DG) region of the hippocampus. NLRP3 inhibitor MCC950 intervention reversed chronic noise-induced activation of NLRP3 inflammasome, AD-like pathologies and impairment of learning and memory in rats. Conclusions: The NLRP3 inflammasome-mediated neuroinflammation played an essential role in chronic noise-induced cognitive dysfunction. These results provide novel strategies for the prevention and treatment of cognitive deficits caused by chronic noise.

Keywords