Pharmaceutics (Mar 2023)
pH-Responsive Water-Soluble Chitosan Amphiphilic Core–Shell Nanoparticles: Radiation-Assisted Green Synthesis and Drug-Controlled Release Studies
Abstract
This work aims to apply water radiolysis-mediated green synthesis of amphiphilic core–shell water-soluble chitosan nanoparticles (WCS NPs) via free radical graft copolymerization in an aqueous solution using irradiation. Robust grafting poly(ethylene glycol) monomethacrylate (PEGMA) comb-like brushes were established onto WCS NPs modified with hydrophobic deoxycholic acid (DC) using two aqueous solution systems, i.e., pure water and water/ethanol. The degree of grafting (DG) of the robust grafted poly(PEGMA) segments was varied from 0 to ~250% by varying radiation-absorbed doses from 0 to 30 kGy. Using reactive WCS NPs as a water-soluble polymeric template, a high amount of DC conjugation and a high degree of poly(PEGMA) grafted segments brought about high moieties of hydrophobic DC and a high DG of the poly(PEGMA) hydrophilic functions; meanwhile, the water solubility and NP dispersion were also markedly improved. The DC-WCS-PG building block was excellently self-assembled into the core–shell nanoarchitecture. The DC-WCS-PG NPs efficiently encapsulated water-insoluble anticancer and antifungal drugs, i.e., paclitaxel (PTX) and berberine (BBR) (~360 mg/g). The DC-WCS-PG NPs met the role of controlled release with a pH-responsive function due to WCS compartments, and they showed a steady state for maintaining drugs for up to >10 days. The DC-WCS-PG NPs prolonged the inhibition capacity of BBR against the growth of S. ampelinum for 30 days. In vitro cytotoxicity results of the PTX-loaded DC-WCS-PG NPs with human breast cancer cells and human skin fibroblast cells proved the role of the DC-WCS-PG NPs as a promising nanoplatform for controlling drug release and reducing the side effects of the drugs on normal cells.
Keywords