Biomedicine & Pharmacotherapy (Feb 2023)

Phosphodiesterase 4B activation exacerbates pulmonary hypertension induced by intermittent hypoxia by regulating mitochondrial injury and cAMP/PKA/p-CREB/PGC-1α signaling

  • Zhou Pan,
  • Xiaofeng Wu,
  • Xinyue Zhang,
  • Ke Hu

Journal volume & issue
Vol. 158
p. 114095

Abstract

Read online

Proliferation of smooth muscle cells, oxidative stress, and pulmonary vasoconstriction resulting from intermittent hypoxia (IH) facilitate pulmonary hypertension (PH) in patients with obstructive sleep apnea. The role of Phosphodiesterase 4 B (PDE4B) in PH has not yet been established. Herein, we investigated whether PDE4B inhibition ameliorates experimental PH by modulating cAMP signaling. We performed an integrative analysis of PDE4B expression in Gene Expression Omnibus datasets, experimental IH-induced rat PH samples, and IH-induced pulmonary arterial smooth muscle cells (PASMCs). PDE4B expression was modulated using siRNA in vitro and a specific adeno-associated virus serotype 1 in vivo. In the databases of mouse models of IH-induced and sustained hypoxia-induced PH and in a rat model of six weeks of IH, the expression of PDE4B was up-regulated. Inhibition of PDE4B attenuated IH-induced pulmonary vascular remodeling and right ventricular hypertrophy. Our results also showed that PDE4B deficiency inhibited IH-induced proliferation of PASMCs with less mitochondrial reactive oxygen species and mitochondrial damage. Meanwhile, IH induced an increase in ATF4, which positively regulated the expression of PDE4B through transcription, and inhibition of ATF4 exerted effects similar to those of PDE4B inhibition. Mechanistically, downregulating the expression of PDE4B resulted in the activation of the cAMP/PKA/p-CREB/PGC-1α pathway in PASMCs after IH. Taken together, our present study provides evidence that inhibition of PDE4B attenuates IH-induced PH by regulating cAMP signaling.

Keywords