Molecules (Jun 2024)

Photochemical and Oxidative Degradation of Chamazulene Contained in <i>Artemisia</i>, <i>Matricaria</i> and <i>Achillea</i> Essential Oils and Setup of Protection Strategies

  • Simone Gabbanini,
  • Jerome Ngwa Neba,
  • Riccardo Matera,
  • Luca Valgimigli

DOI
https://doi.org/10.3390/molecules29112604
Journal volume & issue
Vol. 29, no. 11
p. 2604

Abstract

Read online

Chamazulene (CA) is an intensely blue molecule with a wealth of biological properties. In cosmetics, chamazulene is exploited as a natural coloring and soothing agent. CA is unstable and tends to spontaneously degrade, accelerated by light. We studied the photodegradation of CA upon controlled exposure to UVB-UVA irradiation by multiple techniques, including GC-MS, UHPLC-PDA-ESI-MS/MS and by direct infusion in ESI-MSn, which were matched to in silico mass spectral simulations to identify degradation products. Seven byproducts formed upon UVA exposure for 3 h at 70 mW/cm2 (blue-to-green color change) were identified, including CA dimers and CA benzenoid, which were not found on extended 6 h irradiation (green-to-yellow fading). Photostability tests with reduced irradiance conducted in various solvents in the presence/absence of air indicated highest degradation in acetonitrile in the presence of oxygen, suggesting a photo-oxidative mechanism. Testing in the presence of antioxidants (tocopherol, ascorbyl palmitate, hydroxytyrosol, bakuchiol, γ-terpinene, TEMPO and their combinations) indicated the highest protection by tocopherol and TEMPO. Sunscreens ethylhexyl methoxycinnamate and particularly Tinosorb® S (but not octocrylene) showed good CA photoprotection. Thermal stability tests indicated no degradation of CA in acetonitrile at 50 °C in the dark for 50 days; however, accelerated degradation occurred in the presence of ascorbyl palmitate.

Keywords