Open Biology (Jan 2017)

TRPA1 expression and its functional activation in rodent cortex

  • Ehsan Kheradpezhouh,
  • Julian M. C. Choy,
  • Vincent R. Daria,
  • Ehsan Arabzadeh

DOI
https://doi.org/10.1098/rsob.160314
Journal volume & issue
Vol. 7, no. 4

Abstract

Read online

TRPA1 is a non-selective cation channel involved in pain sensation and neurogenic inflammation. Although TRPA1 is well established in a number of organs including the nervous system, its presence and function in the mammalian cortex remains unclear. Here, we demonstrate the expression of TRPA1 in rodent somatosensory cortex through immunostaining and investigate its functional activation by whole-cell electrophysiology, Ca2+ imaging and two-photon photoswitching. Application of TRPA1 agonist (AITC) and antagonist (HC-030031) produced significant modulation of activity in layer 5 (L5) pyramidal neurons in both rats and mice; AITC increased intracellular Ca2+ concentrations and depolarized neurons, and both effects were blocked by HC-030031. These modulations were absent in the TRPA1 knockout mice. Next, we used optovin, a reversible photoactive molecule, to activate TRPA1 in individual L5 neurons of rat cortex. Optical control of activity was established by applying a tightly focused femtosecond-pulsed laser to optovin-loaded neurons. Light application depolarized neurons (n = 17) with the maximal effect observed at λ = 720 nm. Involvement of TRPA1 was further confirmed by repeating the experiment in the presence of HC-030031, which diminished the light modulation. These results demonstrate the presence of TRPA1 in L5 pyramidal neurons and introduce a highly specific approach to further understand its functional significance.

Keywords