Manufacturing Review (Jan 2020)

A systematic review on improving the biocompatibility of titanium implants using nanoparticles

  • Nhlapo Nthabiseng,
  • Dzogbewu Thywill Cephas,
  • de Smidt Olga

DOI
https://doi.org/10.1051/mfreview/2020030
Journal volume & issue
Vol. 7
p. 31

Abstract

Read online

An ideal biomaterial should be biointegratable with minimum adverse immune response. Titanium (Ti) and its alloys are widely used biomaterials for manufacturing clinical implants because of their innate biocompatibility. However, the bioinert property of Ti may hinder tissue–implant integration and its bio compatibility nature allows for attachment of bacterial cells on implant surfaces. Nanoparticles (NPs) have been proposed as a possible intervention to overcome these biological shortcomings of Ti-based implants. The aim of the current systematic review was to identify literature that demonstrates enhanced biocompatibility of Ti-based implants by incorporating NPs. Electronic searches were conducted through the PubMed/MEDLINE, ScienceDirect, Web of Science and EBSCOhost databases. Studies published in English were extracted, without restrictions on the year of publication, using the following keywords: ‘biocompatibility’, ‘nanoparticles’, ‘titanium’ and ‘implant’. The guidelines stipulated in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement were followed. A total of 630 articles were identified in the initial search and upon reviewing, 21 articles were selected according to the eligibility criteria. The selected literature showed robust evidence to support the hypothesis that the inclusion of NPs improves biocompatibility of Ti implants. The studies further indicated a close correlation between biocompatibility and antibacterial properties, of which NPs have been proven to characteristically achieve both.

Keywords