Scientific Reports (Oct 2021)
Assessment of total and regional bone mineral density using bioelectrical impedance vector analysis in elderly population
Abstract
Abstract This study aimed to investigate the relationship between bone mineral density (BMD) and height-adjusted resistance (R/H), reactance (Xc/H) and phase angle (PhA). A total of 61 male and 64 female subjects aged over 60 years were recruited from middle Taiwan. The R and Xc were measured using Bodystat Quadscan 4000 at a frequency of 50 kHz. BMD at the whole body, L2–L4 spine, and dual femur neck (DFN), denoted as BMDTotal, BMDL2–L4, and BMDDFN, were calculated using a Hologic DXA scanner. The R-Xc graph was used to assess vector shift among different levels of BMD. BMD was positively correlated with Xc/H and negatively correlated with R/H (p < 0.001). The General Linear Model (GLM) regression results were as follows: BMDTotal = 1.473–0.002 R/H + 0.007 Xc/H, r = 0.684; BMDL2–L4 = 1.526–0.002 R/H + 0.012 Xc/H, r = 0.655; BMDDFN = 1.304–0.002 R/H + Xc/H, r = 0.680; p < 0.0001. Distribution of vector in the R-Xc graph was significantly different for different levels of BMDTotal, BMDL2–L4 and BMDDFN. R/H and Xc/H were correlated with BMD in the elderly. The linear combination of R/H and Xc/H can effectively predict the BMD of the whole body, spine and proximal femur, indicating that BIVA may be used in clinical and home-use monitoring tool for screening BMD in the elderly in the future.