EPJ Photovoltaics (Jan 2023)

Impact of the contacting scheme on I-V measurements of metallization-free silicon heterojunction solar cells

  • Brinkmann Malte,
  • Haase Felix,
  • Bothe Karsten,
  • Bittkau Karsten,
  • Lambertz Andreas,
  • Duan Weiyuan,
  • Ding Kaining,
  • Sperlich Hans-Peter,
  • Waltinger Andreas,
  • Schulte-Huxel Henning

DOI
https://doi.org/10.1051/epjpv/2023009
Journal volume & issue
Vol. 14
p. 18

Abstract

Read online

I‑V measurements are sensitive to the number and positioning of current and voltage sensing contacts. For busbarless solar cells, measurement setups have been developed using current collection wires and separate voltage sense contacts. Placing the latter at a defined position enables a grid resistance neglecting measurement and thus I‑V characteristics independent from the contacting system. This technique has been developed for solar cells having a finger grid and good conductivity in the direction of the fingers. The optimal position of the sense contact in case of finger-free silicon heterojunction solar cells has not yet been studied. Here, the lateral charge carrier transport occurs in a transparent conductive oxide layer resulting in a higher lateral resistance. We perform finite difference method simulations of HJT solar cells without front metallization to investigate the impact of high lateral resistances on the I-V measurement of solar cells. We show the high sensitivity on the number of used wires for contacting as well as the position of the sense contact for the voltage measurement. Using the simulations, we are able to explain the high difference of up to 7.5% in fill factor measurements of metal free solar cells with varying TCO sheet resistances between two measurement systems using different contacting setups. We propose a method to compensate for the contacting system to achieve a grid-resistance neglecting measurement with both systems allowing a reduction of the FF difference to below 1.5%.

Keywords