Arab Journal of Mathematical Sciences (Apr 2021)
Reconstruction of a homogeneous polynomial from its additive decompositions when identifiability fails
Abstract
Let X⊂ℙr be an integral and non-degenerate complex variety. For any q∈ℙr let rX(q) be its X-rank and S(X,q) the set of all finite subsets of X such that |S|=rX(q) and q ∈ 〈S〉, where 〈〉 denotes the linear span. We consider the case |S(X,q)|>1 (i.e. when q is not X -identifiable) and study the set W(X)q:=∩ S∈S(X,q)〈S〉, which we call the non-uniqueness set of q. We study the case dimX=1 and the case X a Veronese embedding of ℙn. We conclude the paper with a few remarks concerning this problem over the reals.
Keywords