PLoS Computational Biology (Feb 2022)
Evolutionary information helps understand distinctive features of the angiotensin II receptors AT1 and AT2 in amniota
Abstract
In vertebrates, the octopeptide angiotensin II (AngII) is an important in vivo regulator of the cardiovascular system. It acts mainly through two G protein-coupled receptors, AT1 and AT2. To better understand distinctive features of these receptors, we carried out a phylogenetic analysis that revealed a mirror evolution of AT1 and AT2, each one split into two clades, separating fish from terrestrial receptors. It also revealed that hallmark mutations occurred at, or near, the sodium binding site in both AT1 and AT2. Electrostatics computations and molecular dynamics simulations support maintained sodium binding to human AT1 with slow ingress from the extracellular side and an electrostatic component of the binding free energy around -3kT, to be compared to around -2kT for human AT2 and the δ opioid receptor. Comparison of the sodium binding modes in wild type and mutated AT1 and AT2 from humans and eels indicates that the allosteric control by sodium in both AT1 and AT2 evolved during the transition from fish to amniota. The unusual S7.46N mutation in AT1 is mirrored by a L3.36M mutation in AT2. In the presence of sodium, the N7.46 pattern in amniota AT1 stabilizes the inward orientation of N3.35 in the apo receptor, which should contribute to efficient N3.35 driven biased signaling. The M3.36 pattern in amniota AT2 favours the outward orientation of N3.35 and the receptor promiscuity. Both mutations have physiological consequences for the regulation of the renin-angiotensin system. Author summary The analysis of protein sequences from different species can reveal interesting trends in the structural and functional evolution of a protein family. Here, we analyze the evolution of two G protein-coupled receptors, AT1 and AT2, which bind the angiotensin II peptide and are important regulators of the cardiovascular system. We show that these receptors underwent a mirror evolution. Specific mutations at, or near, the sodium binding pocket occurred in both AT1 and AT2 during the transition to terrestrial life. We carried out electrostatics computations and molecular dynamics simulations to decipher the details of the sodium binding mode in eel and human receptors, as prototypes of fish and amniota receptors. Our results indicate that sodium binding is kinetically slow but thermodynamically stable. Comparison of the sodium binding modes in eel and human receptors reveals that an unusual mutation in the sodium binding pocket of AT1 is critical for biased signaling of amniota AT1 whereas a mutation in AT2 promotes promiscuity of amniota AT2. In turn, these data indicate that a few mutations at a strategic position (here the sodium binding pocket) are an efficient way to gain functional evolution.